3-(1,2-DIPHENYLETHYL)-1,4,5,6-TETRAHYDRC-1, $2,4-$ TRIAZINE- $3-{ }^{14} \mathrm{C}$ MONOHYDROCHLORIDE

Lennon H. McKendry
The Dow Chemical Company
Midland, Michigan 48640

SUMMARY

3-(1,2-Diphenylethyl)-1,4,5,6-tetrahydro-1,2,4-triazine-3- ${ }^{14} \mathrm{C}$ hydrochloride(6) with a specific activity of $25.53 \mathrm{mcj} / \mathrm{mmole}$ was prepared in a 66.1% yield from benzyl cyanide-l-14 C via a three step process.

Key Words: (3-(1,2-Diphenylethyl)-1,4,5,6-tetrahydro-1,2,4-triazine-3-14C monohydrochloride), Carbon-14, 3-aralkyl-as-triazines, 2,3-diphenyłacryonitrile-l$1^{4} \mathrm{C}$, 2,3-diphenylpropionitrile-1-14 C

INTRODUCTION
3-(1,2-Diphenylethyl)-1,4,5,6-tetrahydro-1,2,4-triazine
hydrochloride(6) is an antidepressant(1,2) currently undergoing clinical trials. A radiolabeled sample was required for pharmacokinetic and metabolism studies in monkeys.

DISCUSSION

```
The series of reactions used to produce 6}\mathrm{ are given in
```

Scheme I.

SCHEME I

$$
\begin{aligned}
\mathrm{PhCH}= & \mathrm{CCN} \\
& 1 \mathrm{Ph}
\end{aligned}
$$

3

Step 2

$\mathrm{PhCH}=\mathrm{CCN}$	H_{2}	$\mathrm{PhCH}_{2} \mathrm{CHCN}$
Ph	Pd / C	Ph
	2B-EtOH	
$\underline{3}$		$\underline{4}$

Step 3

Initially non-radioactive reactants were used (cold runs) to adapt the reaction sequence to microsynthetic conditions. The first two steps of the sequence proceeded smoothly affording a 94.8% overall yield of 2,3 -diphenylpropionitrile (98.8 GLC area \% pure) purified via silica gel chromatography. Duplication of the reaction sequence using phenylacetonitrile-l- ${ }^{14} \mathrm{C}$ afforded a 76.3% yield of radiolabeled 4. The product was 99.4 GLC area \% pure and no impurities could be detected by TLC. The differences in the yields of $\underline{4}$ are a result of the difference in the yield of crude 3 isolated, being only 83% in the latter instance.

Considerable difficulty was initially encountered in step 3 of the reaction(3). The lack of reaction of $\underline{3}$ and $\underline{4}$ under atmospheric conditions was attributed to the loss of the volatile catalyst (3) derived from the sulfur under microsynthetic conditions. Therefore, the reaction was conducted under sealed ampoule

3-(1,2-Diphenylethyl)-1,4,5,6-Tetrahydro-1,2,4-Triazine-3- ${ }^{14}$ C. HCl
conditions. The latter technique afforded an 83.0% yield of 6 in the cold run, mp $231-233^{\circ} \mathrm{C}$. The infrared spectrum (nujol) and mass spectrum (obtained by W. Braun, Dow Chemical) of the product were identical to those of authentic $\underline{6}, \operatorname{mp} 231-233^{\circ} \mathrm{C}$.

Repetition of Step 3 (Scheme I) with 2,3-diphenylpropionitrile-1- ${ }^{14} \mathrm{C}$ afforded an 86.7% yield (66.1% overall yield) of $>99 \%$ radiochemically pure 3-(1,2-diphenylethyl)-1,4,5,6-tetrahydro-1,2,4-triazine-3- ${ }^{14} \mathrm{C}$ hydrochloride.

GLC ANALYSES

All GLC analyses were conducted on a Hewlett Packard Model 5830A instrument containing a 2^{\prime} x 4 mm glass column packed with 10\% SE 30 on Chromasorb WHP, 80-100 mesh; Conditions: \underline{A} (For Step 1 of Scheme I) $50-250^{\circ} \mathrm{C}$ at $20^{\circ} / \mathrm{min}$, time at $50^{\circ}=2.0 \mathrm{~min}$, time at $250^{\circ}=7.0 \mathrm{~min}$; B (For Steps 2 and 3) $100-250^{\circ} \mathrm{C}$ at $20^{\circ} / \mathrm{min}$, time at $100^{\circ}=2.0 \mathrm{~min}$, time at $250^{\circ} \mathrm{C}=7.0 \mathrm{~min}$. The following retention times were observed:

Component	Conditions	Rt (min)
$\frac{A}{2}$	A	5.95
$\frac{3}{3}$	A	4.50
$\frac{3}{4}$	B	11.04
$\frac{4}{6}$	B	8.48

EXPERIMENTAL

2,3-Diphenylacryonitrile-1-14 C (3)
The ampoule containing benzyl cyanide-1- ${ }^{14} \mathrm{C}$ (New England Nuclear, Lot \#922-187, Assay \#90450, $20.0 \mathrm{mCi}, 24.8 \mathrm{mCi} / \mathrm{mmole}$, 0.806 mole) was opened and the contents transferred to a $25-$ $m l$ pear-shaped flask previously flushed with N_{2}. The ampoule was rinsed with 14-0.5 ml-portions of 2B-ethanol (contains 2\% benzene) and the rinses added to the flask. Benzaldehyde, $97 \mu 1$, (0.960 mmole) was added to the resultant solution. Sodium, 230 mg (10.0 mmole), was dissolved in 10 ml of $2 \mathrm{~B}-$ ethanol in a volumetric flask and a 0.81 ml sample of the resultant solution (0.81 mmole) added dropwise to the above solution under a N_{2} atmosphere over a ca 2 minute period. The flask was stoppered and stirring continued at ca $22^{\circ} \mathrm{C}$ for 2.0 hours. An additional $4.0 \mu 1(0.0396 \mathrm{mmole})$ of benzaldehyde and 0.3 ml of the above NaOEt solution were added and stirring continued for 0.67 hours. A final $8 \mu 1$ of benzaldehyde was added causing the last of the benzyl cyanide (GLC analysis) to react. After stirring for 1.0 hour, the solution was cooled in an ice bath and 7 ml of $\mathrm{H}_{2} \mathrm{O}$ added dropwise. The resultant mixture was stirred 0.5 hour and most of the solvent removed from the precipitate using a pipette containing a glass wool plug. The concentrated mixture was filtered, and the precipitate washed with 1:1 2B-ethanol- $\mathrm{H}_{2} \mathrm{O}$ solution. The precipitate was dissolved in 2 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and filtered through MgSO_{4} into a 25 ml round

3-(1,2-Diphenylethyl)-1,4,5,6-Tetrahydro-1,2,4-Triazine-3- ${ }^{14}$ C. HCl
bottomed flask. The original flask and filter were rinsed with $10-0.5 \mathrm{ml}$-portions of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the rinses transferred to the 25 ml flask. The solvent was removed under a N_{2} stream to afford 137.3 mg of light yellow crystalline 2,3-diphenylacryonitrile-1- ${ }^{14} \mathrm{C}(\underline{3}) \quad($ Theory $=165.4 \mathrm{mg}, 83 \%$ yield). The precipitate was dissolved in 2 ml of 2 B -ethanol and transferred to a 25 ml round bottomed 2 -neck (14/20 and 19/22 (joints) flask and the original flask rinsed with 80.5 ml-portions of 2 B -ethanol. The final solution contained no detectable impurities by GLC.

The cold run under the above conditions afforded a 97\% yield of crude 3 .

2,3-Diphenylpropionitrile-1- ${ }^{14} \mathrm{C}$ (4)
The flask containing the above 2-B ethanol solution of $\underline{3}$ was connected to a hydrogenation system, flushed with N_{2} and a small quantity of $5 \% \mathrm{Pd} / \mathrm{C}$ added. The system was flushed with H_{2} and the hydrogenation initiated. After 3.1 hours of stirring at ca $22^{\circ} \mathrm{C}$, 25 ml (ca 1.1 mmole) of H_{2} had been consumed and the reaction was $>99.7 \%$ complete by GLC analysis. The mixture was filtered through celite filter aid and the solvent removed from the filtrate in vacuo. The crystalline residue was dissolved in 2 ml of $1: 9$ (v/v) acetone: \underline{n}-hexane and chromatographed on a $3.0 \mathrm{~cm} \times 45 \mathrm{~cm}$ column containing 100 g of Brinkmann Silica Gel G60 with 1:9 acetone: \underline{n}-hexane solution to afford upon solvent removal
127.5 mg (0.615 mole, 92.0% yield, 76.3% overall yield) of 4 as a white crystalline solid (99.4 GLC area $\%$ pure). The precipitate was dissolved in 1 ml of $\mathrm{Et}_{2} \mathrm{O}$ and a sample spotted on a $2^{\prime \prime} \times 8^{\prime \prime}$ Silica Gel 60-F254 plate. The plate was developed with $1: 9(v / v)$ acetone: \underline{n}-hexane and scanned on a Vanguard autoscanner. No radioactive impurities were detected.

$\frac{3-(1,2-d i p h e n y l e t h y l)-1,4,5,6-t e t r a h y d r o-1,2,4-t r i a z i n e-4-}{14}$ C monohydrochloride (6)

The above ethereal solution of $\underline{4}$ was transferred to a ca 15 ml glass ampoule, the flask rinsed with several portions of $E t_{2} \mathrm{O}$, and each rinse transferred to the ampoule. Sulfur, 1.4 mg (0.0438 mole, 7.1 mole $\%$) was added and the $\mathrm{Et}_{2} \mathrm{O}$ removed under a N_{2} atmosphere. The flask was cooled to $-78^{\circ} \mathrm{C}$ and a $200 \mu \mathrm{l}$ aliquot ($2.66 \mathrm{mmole}, 4.33 \mathrm{eq}$) of distilled 2 -aminoethylhydrazine (bp $38^{\circ} / 0.2 \mathrm{~mm}$) was added under a N_{2} atmosphere. The ampoule was sealed, wrapped in glass wool, placed in a S.S. tube half filled with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the tube sealed and placed in a $95^{\circ} \mathrm{C}$ oil bath. After 24 hours the tube was cooled in an ice bath, the ampoule removed, cooled to $-78^{\circ} \mathrm{C}$ and opened. The contents were allowed to warm to ca $22^{\circ} \mathrm{C}$ under a N_{2} atmosphere and transferred to a 25 ml pear shaped flask containing a side arm and previously flushed with N_{2}. The ampoule was rinsed with $5-0.5 \mathrm{ml}$-portions of $\mathrm{C}_{6} \mathrm{H}_{6}$ ' $5-0.5 \mathrm{ml}$-portions of $\mathrm{H}_{2} \mathrm{O}$ and finally with $5-0.5 \mathrm{ml}$-portions of
$\mathrm{C}_{6} \mathrm{H}_{6}$. The combined mixture was stirred well and the aqueous layer removed. The organic layer was washed with 5 ml of $\mathrm{H}_{2} \mathrm{O}$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and the filtrate collected in a 10 ml pear shaped flask. The filtrate was cooled in an ice bath and 0.6 ml of a previously prepared $2 \mathrm{~B}-$ ethanol- HCl solution (0.998 mmole $\mathrm{HCl} / \mathrm{ml}$) was added dropwise. The first few drops cause cloudiness but a clear solution results upon complete addition. The solution was stirred 0.5 hours at ca $5^{\circ} \mathrm{C}$ affording a white precipitate. The mixture was filtered and the precipitate washed with two-0.5 ml-portions of $\mathrm{C}_{6} \mathrm{H}_{6}$ and two-0.5 ml-portions of $1: 1(v / v)$ isopropanol:n-hexane solution. The precipitate was dissolved in MeOH and transferred to a 100 ml volumetric flask. The filter was rinsed with several portions of MeOH and the solution diluted to volume (Solution A). A $1 \mu 1$ aliquot of Solution A was analyzed by GLC to afford a spectrum identical to that for analytically pure $\underline{6}$ (obtained from G. Hurst, Dow Chemical).

A 1.0 ml aliquot of Solution A was diluted to 100 ml (Solution B) and a 1 ml aliquot of Solution B diluted to 10 ml (Solution C).

A 0.5 ml aliquot of Solution A was removed for subsequent radiometric analyses and the solvent removed from the remaining 98.5 ml of solution in vacuo to afford $158.4 \mathrm{mg}(0.5248$ mmole, 86.7% yield, 66.1% overall yield) of $>99 \%$ radiochemically pure 6 (13.52 mCi total at $25.53 \mathrm{mCi} / \mathrm{mmole}$).

RADIOMETRIC DETERMINATION

The radioactivity was determined in a Packard Tri-Carb Liquid Scintillation Spectrometer using New England Nuclear Aquasol universal liquid scintillation cocktail. Triplicate assays of Solution C were taken.

The radiochemical purity was determined by spotting $2 \mu \mathrm{l}$ aliquots of Solution A on seven $2^{\prime \prime} \times 8^{\prime \prime}$ Silica Gel 60 F254 plates along with standard samples of $\underline{6}$ and intermediate 4 and developing the plates in (A) $1: 1(\mathrm{v} / \mathrm{v}) \mathrm{C}_{6} \mathrm{H}_{6}: \mathrm{CH}_{3} \mathrm{OH}$ (B) 3.5:1.5:1(v/v/v) $\mathrm{CH}_{3} \mathrm{CN}: \mathrm{CH}_{3} \mathrm{OH}: \mathrm{HCO}_{2} \mathrm{H}$ (C) $30: 10: 1(\mathrm{v} / \mathrm{v} / \mathrm{v}) \mathrm{CHCl}_{3}:$ $\mathrm{CH}_{3} \mathrm{OH}: \mathrm{NH}_{4} \mathrm{OH}$ (D) $4: I(\mathrm{v} / \mathrm{v}) \mathrm{CH}_{3} \mathrm{CN}: \mathrm{HCO}_{2} \mathrm{H}$ (E) $5: 5: 1(\mathrm{v} / \mathrm{v} / \mathrm{v}) \mathrm{C}_{6} \mathrm{H}_{6}$: $\mathrm{CH}_{3} \mathrm{OH}: \mathrm{HCO}_{2} \mathrm{H}$ (F) $5.3: 1(\mathrm{v} / \mathrm{v}) \mathrm{C}_{6} \mathrm{H}_{6}: \mathrm{Et}_{3} \mathrm{~N}$ and (G) $10: 10: 1(\mathrm{v} / \mathrm{v} / \mathrm{v})$ $\mathrm{C}_{6} \mathrm{H}_{6}:$ iPrOH: $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$.

The plates were photographed by exposing them to Kodak Medical X-Ray film (RP Royal X-Onat) over a 16 hour period. Plates \underline{A} and \underline{F} possessed considerable tailing whereas decomposition appeared to be occurring on Plate G. Plates \underline{D} and \underline{E} were scraped in 5 mm sections using a Zonal Scraper and each section deactivated with 50% aqueous methanol, diluted with Aquasol and counted. Histogram analyses of the data afford product of >99\% radiochemical purity.

3-(1,2-Diphenylethyl)-1,4,5,6-Tetrahydro-1,2,4-Triazine-3- ${ }^{14}$ C. HCl

REFERENCES

1. Trepanier D. L., Shriver K. L., and Eble J. N. - J. Med. Chem., 12 257(1969).
2. Trepanier D. L. - U.S. Patent 3,471,485 (1969).
3. Schuster, A. J. and Martin J. - U. S. Patent 4,071,684(1978).
